
University of Southern California
Center for SoftwareEngineering CeBASE

High Dependability Computing in a
Competitive World

Barry Boehm, USC

IEEE-NASA SW Engineering Workshop
November 28, 2001

(boehm@; http://) sunset.usc.edu

11/28/01 ©USC-CSE 2

University of Southern California
Center for SoftwareEngineering CeBASE

HDC in a Competitive World

• The economics of IT competition and
dependability

• Software Dependability Opportunity Tree
– Decreasing defects
– Decreasing defect impact
– Continuous improvement

• Conclusions and References

11/28/01 ©USC-CSE 3

University of Southern California
Center for SoftwareEngineering CeBASE

Competing on Schedule and Quality
- A risk analysis approach

• Risk Exposure RE = Prob (Loss) * Size (Loss)

– “Loss” – financial; reputation; future prospects, …

• For multiple sources of loss:

sources
RE = ΣΣ [Prob (Loss) * Size (Loss)]source

11/28/01 ©USC-CSE 4

University of Southern California
Center for SoftwareEngineering CeBASE

Example RE Profile: Time to Ship
- Loss due to unacceptable dependability

Time to Ship (amount of testing)

RE =
P(L) * S(L)

Many defects: high P(L)
Critical defects: high S(L)

Few defects: low P(L)
Minor defects: low S(L)

11/28/01 ©USC-CSE 5

University of Southern California
Center for SoftwareEngineering CeBASE

Example RE Profile: Time to Ship
- Loss due to unacceptable dependability

- Loss due to market share erosion

Time to Ship (amount of testing)

RE =
P(L) * S(L)

Few rivals: low P(L)
Weak rivals: low S(L)

Many rivals: high P(L)
Strong rivals: high S(L)

Many defects: high P(L)
Critical defects: high S(L)

Few defects: low P(L)
Minor defects: low S(L)

11/28/01 ©USC-CSE 6

University of Southern California
Center for SoftwareEngineering CeBASE

Example RE Profile: Time to Ship
- Sum of Risk Exposures

Time to Ship (amount of testing)

RE =
P(L) * S(L)

Few rivals: low P(L)
Weak rivals: low S(L)

Many rivals: high P(L)
Strong rivals: high S(L)

Sweet
Spot

Many defects: high P(L)
Critical defects: high S(L)

Few defects: low P(L)
Minor defects: low S(L)

11/28/01 ©USC-CSE 7

University of Southern California
Center for SoftwareEngineering CeBASE

Comparative RE Profile:
Safety-Critical System

Time to Ship (amount of testing)

RE =
P(L) * S(L)

Mainstream
 Sweet

 Spot

Higher
S(L): defects

High-Q
Sweet
Spot

11/28/01 ©USC-CSE 8

University of Southern California
Center for SoftwareEngineering CeBASE

Comparative RE Profile:
Internet Startup

Time to Ship (amount of testing)

RE =
P(L) * S(L)

 Mainstream
 Sweet

Spot

Higher
S(L): delaysLow-TTM

Sweet
Spot

TTM:
Time to Market

11/28/01 ©USC-CSE 9

University of Southern California
Center for SoftwareEngineering CeBASE

Conclusions So Far
• Unwise to try to compete on both cost/schedule and

quality
– Some exceptions: major technology or marketplace edge

• There are no one-size-fits-all cost/schedule/quality
strategies

• Risk analysis helps determine how much testing
(prototyping, formal verification, etc.) is enough
– Buying information to reduce risk

• Often difficult to determine parameter values
– Some COCOMO II values discussed next

11/28/01 ©USC-CSE 10

University of Southern California
Center for SoftwareEngineering CeBASE

0.8 0.9 1.0 1.1 1.2 1.3

Slight
inconvenience

 (1 hour)

Low, easily
recoverable

loss

Moderate
recoverable

loss

High
Financial

Loss

Loss of
Human Life

1 month

1 day

2 years

100 years

Defect Risk Rough MTBF(mean time between failures)

Commercial
quality leader

1.10

In-house support software
1.0

Commercial
cost leader

0.92

0.82

Startup
demo

Safety-critical

1.26

Relative Cost/Source Instruction

Software Development Cost/Quality Tradeoff
 - COCOMO II calibration to 161 projects

High

RELY
Rating

Very
High

Nominal

Low

Very
Low

11/28/01 ©USC-CSE 11

University of Southern California
Center for SoftwareEngineering CeBASE

“Quality is Free”

• Did Philip Crosby’s book get it all wrong?

• Investments in dependable systems

– Cost extra for simple, short-life systems

– Pay off for high-value, long-life systems

11/28/01 ©USC-CSE 12

University of Southern California
Center for SoftwareEngineering CeBASE

Software Life-Cycle Cost vs. Dependability

0.8

Very
Low

Low Nominal High Very
High

0.9

1.0

1.1

1.2

1.3

1.4

1.10

1.0

0.92

1.26

0.82

Relative
Cost to
Develop

COCOMO II RELY Rating

11/28/01 ©USC-CSE 13

University of Southern California
Center for SoftwareEngineering CeBASE

Software Life-Cycle Cost vs. Dependability

0.8

Very
Low

Low Nominal High Very
High

0.9

1.0

1.1

1.2

1.3

1.4

1.10

0.92

1.26

0.82

Relative
Cost to
Develop,
Maintain

COCOMO II RELY Rating

1.23

1.10

0.99

1.07

11/28/01 ©USC-CSE 14

University of Southern California
Center for SoftwareEngineering CeBASE

Software Life-Cycle Cost vs. Dependability

0.8

Very
Low

Low Nominal High Very
High

0.9

1.0

1.1

1.2

1.3

1.4

1.10

0.92

1.26

0.82

Relative
Cost to
Develop,
Maintain

COCOMO II RELY Rating

1.23

1.10

0.99

1.07

1.11

1.05

70%
Maint.

1.07

1.20

• Low-dependability inadvisable
 for evolving systems

11/28/01 ©USC-CSE 15

University of Southern California
Center for SoftwareEngineering CeBASE

Software Ownership Cost vs. Dependability

0.8

Very
Low

Low Nominal High Very
High

0.9

1.0

1.1

1.2

1.3

1.4

1.10

0.92

1.26

0.82

Relative
Cost to
Develop,
Maintain,
Own and
Operate

COCOMO II RELY Rating

1.23

1.10

0.99

1.07

1.11

1.05

70%
Maint.

1.07

1.20

0.76
0.69

VL = 2.55
 L = 1.52

Operational-defect cost at Nominal dependability
= Software life cycle cost

Operational -
defect cost = 0

11/28/01 ©USC-CSE 16

University of Southern California
Center for SoftwareEngineering CeBASE

Conclusions So Far - 2

• Quality is better than free for high-value, long-life
systems

• There is no universal dependability sweet spot
– Yours will be determined by your value model
– And the relative contributions of dependability techniques

– Let’s look at these next

11/28/01 ©USC-CSE 17

University of Southern California
Center for SoftwareEngineering CeBASE

HDC in a Competitive World

• The economics of IT competition and
dependability

• Software Dependability Opportunity Tree
– Decreasing defects
– Decreasing defect impact
– Continuous improvement

• Conclusions

11/28/01 ©USC-CSE 18

University of Southern California
Center for SoftwareEngineering CeBASE

Software Dependability Opportunity Tree

Decrease
Defect
Risk
Exposure

 Continuous
 Improvement

Decrease
Defect
Impact,
Size (Loss)

Decrease
Defect
Prob (Loss)

Defect Prevention

Defect Detection
and Removal

Value/Risk - Based
Defect Reduction

Graceful Degradation

CI Methods and Metrics

Process, Product, People

Technology

11/28/01 ©USC-CSE 19

University of Southern California
Center for SoftwareEngineering CeBASE

Software Defect Prevention Opportunity Tree

IPT, JAD, WinWin,…
PSP, Cleanroom, Dual development,…
Manual execution, scenarios,...
Staffing for dependability
Rqts., Design, Code,…
Interfaces, traceability,…
Checklists

Defect
Prevention

People
practices

Standards

Languages
Prototyping
Modeling & Simulation
Reuse
Root cause analysis

11/28/01 ©USC-CSE 20

University of Southern California
Center for SoftwareEngineering CeBASE

People Practices: Some Empirical Data

• Cleanroom: Software Engineering Lab
– 25-75% reduction in failure rates
– 5% vs 60% of fix efforts over 1 hour

• Personal Software Process/Team Software Process
– 50-75% defect reduction in CMM Level 5 organization
– Even higher reductions for less mature organizations

• Staffing
– Many experiments find factor-of-10 differences in people’s defect

rates

11/28/01 ©USC-CSE 21

University of Southern California
Center for SoftwareEngineering CeBASE

Software Defect Detection Opportunity Tree
Completeness checking
Consistency checking
 - Views, interfaces, behavior, pre/post

conditions

Traceability checking

Compliance checking
 - Models, assertions, standards

 Defect
 Detection
and Removal
 - Rqts.
 - Design
 - Code

 Testing

Reviewing

Automated
Analysis

Peer reviews, inspections

Architecture Review Boards

Pair programming

Requirements & design

Structural

Operational profile

Usage (alpha, beta)

Regression

Value/Risk - based

Test automation

11/28/01 ©USC-CSE 22

University of Southern California
Center for SoftwareEngineering CeBASE

Orthogonal Defect Classification
- Chillarege, 1996

Percent within activity

40

30

20

10

25

40

20 20

30

20

30 30

10

40

20

10

0

10

20

30

40

50

Design Code review Function test System test

Function Assignment Interface Timing

11/28/01 ©USC-CSE 23

University of Southern California
Center for SoftwareEngineering CeBASE

Defect Impact Reduction Opportunity Tree
Business case analysis

Pareto (80-20) analysis

V/R-based reviews

V/R-based testing

Cost/schedule/quality
as independent variable

Decrease
Defect
Impact,

Size (Loss)

 Graceful
Degredation

Value/Risk -
Based Defect
Reduction

Fault tolerance

Self-stabilizing SW

Reduced-capability models

Manual Backup

Rapid recovery

11/28/01 ©USC-CSE 24

University of Southern California
Center for SoftwareEngineering CeBASE

Pareto 80-20 Phenomena

• 80% of the rework comes from 20% of the
defects

• 80% of the defects come from 20% of the
modules
– About half the modules are defect-free

• 90% of the downtime comes from < 10% of the
defects

11/28/01 ©USC-CSE 25

University of Southern California
Center for SoftwareEngineering CeBASE

Pareto Analysis of Rework Costs

0
10
20
30
40
50
60
70
80
90

100

0 10 20 30 40 50 60 70 80 90 100

% of Software Problem Reports (SPR’s)

TRW Project A
373 SPR’s

TRW Project B
1005 SPR’s

% of
Cost
to
Fix
SPR’s

Major Rework Sources:
Off-Nominal Architecture-Breakers
A - Network Failover
B - Extra-Long Messages

11/28/01 ©USC-CSE 26

University of Southern California
Center for SoftwareEngineering CeBASE

Cost, Schedule, Quality: Pick any Two?

C

QS

11/28/01 ©USC-CSE 27

University of Southern California
Center for SoftwareEngineering CeBASE

Cost, Schedule, Quality: Pick any Two?

C

QS

C

QS

• Consider C, S, Q as Independent Variable
– Feature Set as Dependent Variable

11/28/01 ©USC-CSE 28

University of Southern California
Center for SoftwareEngineering CeBASE

C, S, Q as Independent Variable
• Determine Desired Delivered Defect Density (D4)

– Or a value-based equivalent
• Prioritize desired features

– Via QFD, IPT, stakeholder win-win
• Determine Core Capability

– 90% confidence of D4 within cost and schedule
– Balance parametric models and expert judgment

• Architect for ease of adding next-priority features
– Hide sources of change within modules (Parnas)

• Develop core capability to D4 quality level
– Usually in less than available cost and schedule

• Add next priority features as resources permit
• Versions used successfully on 17 of 19 USC digital library projects

11/28/01 ©USC-CSE 29

University of Southern California
Center for SoftwareEngineering CeBASE

• Future trends intensify competitive HDC challenges
– Complexity, criticality, decreased control, faster change

• Organizations need tailored, mixed HDC strategies
– No universal HDC sweet spot
– Goal/value/risk analysis useful
– Quantitative data and models becoming available

• HDC Opportunity Tree helps sort out mixed strategies
• Quality is better than free for high-value, long-life systems
• Attractive new HDC technology prospects emerging

– Architecture- and model-based methods
– Lightweight formal methods
– Self-stabilizing software
– Complementary theory and empirical methods

Conclusions

11/28/01 ©USC-CSE 30

University of Southern California
Center for SoftwareEngineering CeBASE

References
 V. Basili et al., “SEL’s Software Process Improvement Program,” IEEE Software, November 1995, pp. 83-87.

 B. Boehm and V. Basili, “Software Defect Reduction Top 10 List,” IEEE Computer, January 2001

 B. Boehm et al., Software Cost Estimation with COCOMO II, Prentice Hall, 2000.

 J. Bullock, “Calculating the Value of Testing,” Software Testing and Quality Engineering, May/June 2000, pp.
56-62

 CeBASE (Center for Empirically-Based Software Engineering), http://www.cebase.org

 R. Chillarege, “Orthogonal Defect Classification,” in M. Lyu (ed.), Handbook of Software Reliability
Engineering, IEEE-CS Press, 1996, pp. 359-400.

 P. Crosby, Quality is Free, Mentor, 1980.

 R. Grady, Practical Software Metrics, Prentice Hall, 1992

 N. Leveson, Safeware: System Safety and Computers, Addison Wesley, 1995

 B. Littlewood et al., “Modeling the Effects of Combining Diverse Fault Detection Techniques,” IEEE Trans.
SW Engr. December 2000, pp. 1157-1167.

 M. Lyu (ed), Handbook of Software Reliability Engineering, IEEE-CS Press, 1996

 J. Musa and J. Muda, Software Reliability Engineered Testing, McGraw-Hill, 1998

 M. Porter, Competitive Strategy, Free Press, 1980.

 P. Rook (ed.), Software Reliability Handbook, Elsevier Applied Science, 1990

 W. E. Royce, Software Project Management, Addison Wesley, 1998.

11/28/01 ©USC-CSE 31

University of Southern California
Center for SoftwareEngineering CeBASE

CeBASE Software Defect Reduction Top-10 List
- http://www.cebase.org

1. Finding and fixing a software problem after delivery is often 100 times more expensive

 than finding and fixing it during the requirements and design phase.

2. About 40-50% of the effort on current software projects is spent on avoidable rework.

3. About 80% of the avoidable rework comes form 20% of the defects.

4. About 80% of the defects come from 20% of the modules and about half the modules

 are defect free.

5. About 90% of the downtime comes from at most 10% of the defects.

6. Peer reviews catch 60% of the defects.

7. Perspective-based reviews catch 35% more defects than non-directed reviews.

8. Disciplined personal practices can reduce defect introduction rates by up to 75%.

9. All other things being equal, it costs 50% more per source instruction to develop high-

 dependability software products than to develop low-dependability software products.

 However, the investment is more than worth it if significant operations and

 maintenance costs are involved.

10. About 40-50% of user programs have nontrivial defects.

